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ABSTRACT 

Closed-form equations for determination of reactions and internal forces of linear-elastic symmetric arches with 

constant cross-sections are derived. The derivation of the equations was initially made for segmental, three-

hinged, two-hinged, and hingeless arches. Not all derived equations are simple, but still not excessively complex 

to apply, and they reveal several new insights into the structural behavior of arches. The first is an extremely 

simple approximate equation for horizontal reactions of a hingeless arch under self-weight, which could be also 

applied with excellent accuracy to catenary and parabolic arches, and with a desirable level of accuracy to two- 

and three-hinged arches with a relatively wide range of geometries. The second insight is an approximately linear 

relationship between reactions and between internal forces of arches with different structural systems, which helps 

understand the global structural behavior of arches in a new way and enables inference of some other insights 

presented in the paper. The third insight reflects the relationships between normal force distribution and its 

eccentricity in different types of arches. Finally, the fourth insight regards the comparison of behavior of arches 

under the self-weight with those loaded with uniformly distributed load along their span.  

 

Keywords: symmetric linear-elastic arch, different structural systems, horizontal reaction, closed-form equations, 
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1. INTRODUCTION 

Mastering segmental (circular-shaped, round) arches 

in antiquity enabled the creation of large-scale 

infrastructure and the built environment through 

centuries. The arch as a structural system was 

discovered and applied in Sumerian civilization on a 

small scale, while the systematic use of arches 

started with Etruscans (e.g., [1]) in 4th century Before 

Common Era (BCE, also referred to as BC – Before 

Christ), and remained one of the main structural 

systems for the following two-and-one-half 

millennia. The most frequent shape of an ancient 

large-scale arch was semi-circular, but exceptions 

were noticed as early as in 2nd century BCE (e.g., 

[2]). Development of engineering mechanics and 

various analytical techniques from the 17th to the 19th 

century enabled a better understanding of the internal 

force distributions and stress distributions within an 

arch [3]. Subsequently, the arch shape diversified 

and took other forms, different from the segmental 

(e.g., elliptic, catenary, parabolic, etc.), i.e., the 

shape was designed from case to case so that it could 

optimize one or several design constraints (e.g. 

relative to aesthetics, materials, stress, etc.).  

Probably the first description of the structural 

behavior of arches is given by Leonardo da Vinci 

who has written [4] (1508?): “An arch is nothing 

other than a strength caused by two weaknesses; for 

the arch in buildings is made up of two segments of 

a circle, and each of these segments being in itself 

very weak desires to fall, and as the one withstands 

the downfall of the other the two weaknesses are 

converted into a single strength”. Robert Hooke 

understood how the (moment-free) arch works [3] 

and published in 1676 the anagram describing 

catenary as the ideal shape for an arch subjected to 

self-weight [5]. There was a lot of progress over the 

centuries in understanding and deepening the 

knowledge on arches and excellent overviews can be 

found in [3] and [12]. Thus, there are numerous 

publications accumulated over time that in a 

complementary manner present the analysis arches 

from various points of view (e.g., [1], [4-11, 13-14], 

just to name a few). More recent literature mostly 
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focuses on the non-linear analysis of arches (incl. 

geometric and material non-linearity, e.g., [15-16]) 

and buckling analysis of arches (e.g., [17]). Some 

recent literature still deals with linear elastic arches, 

including equations for moment-free arches [18] and 

closed-form equations for funicular arches [19].  

The author of this paper derived simple closed-form 

expressions for reactions in segmental, catenary and 

parabolic arches [20]. Nevertheless, to the best of 

author’s knowledge, accessible literature does not 

present simple closed-form expressions for internal 

forces of symmetric linear elastic segmental arches 

subjected to dead-loads (self-weight of the arch, 

weight of the deck supported by the arch, etc.).  

The mathematical analysis of linear-elastic arches 

based on differential equations dates back to the 

middle of the 19th century [12] with works of Bresse 

(1854) [6] and Winkler (1858) [7]. Closed solutions 

for these equations can ease conceptual design and 

preliminary analysis of arches, especially for 

structures built in materials with linear or quasi-

linear behavior such as steel, timber, or concrete. In 

addition, closed solutions can augment the 

understanding of certain properties of linear-elastic 

arches that are not easy to assess by methods found 

in literature so far, or by numerical methods such as 

finite element modeling (FEM) or discrete element 

modeling (DEM). Note that the words “conceptual” 

and “preliminary” are important in the statement 

above, as in many cases the linear-elastic approach 

is not sufficient or appropriate for detailed design 

and analysis. For detailed design and analysis, FEM 

or DEM with appropriate constitutive equations and 

boundary conditions should be used. However, the 

closed-form solutions can inform detailed design and 

analysis by helping set the initial values for models.  

Hence, the aims of this paper are (i) to present 

closed-form expressions for reactions and internal 

forces of three-hinged, two-hinged and hingeless 

symmetric linear-elastic segmental arches with 

constant cross-section subjected to uniformly 

distributed force along the centerline (i.e., the self-

weight of the arch, see Equations 5-12) and along the 

span (e.g., the self-weight of the deck supported by 

arch, see Equations 19-23), (ii) to present simple, 

approximate, yet accurate expressions for the 

determination of horizontal reactions of the 

hingeless and three-hinged segmental arch under the 

above mentioned loads, respectively (see Equations 

13 and 20), and evaluate to what extent are these 

expression applicable to other types of segmental 

arches, (iii) to evaluate in detail the accuracy of 

expressions in their application to catenary and 

parabolic arches, and understand how the difference 

in shape affects the accuracy, (iv) to identify 

relationships between reactions and between internal 

forces in different types of arches given that they 

have the same geometrical and mechanical 

properties (but not the same structural system, see 

Equations 14-16 and 24), and (v) to demonstrate 

applicability of closed form expressions by 

parametric study on eccentricity of normal force in 

segmental arches and by comparison of reactions of 

the two analyzed load scenarios.   

The closed-form expressions were derived based on 

planar linear beam theory using equations of 

equilibrium for the three-hinged arch, traditional 

force method for the two-hinged arch, and the 

method of elastic center (a special case of force 

method) for the hingeless arch. Note that for planar 

beam theory to be applicable, the depth of the cross-

section should be significantly smaller than both the 

length of the arch and the radius of the arch (i.e., the 

ratios depth over length and depth over radius should 

be both smaller than approximately 1/5 [13]). These 

constraints are found in most real-life cases, and thus 

the expressions and conclusions derived in this paper 

have very broad applicability.  

 

2. OVERVIEW OF GENERAL EQUATIONS 

OF A SEGMENTAL ARCH 

In general case, differential equations of curvilinear 

beams are difficult or impossible to solve in closed 

form as they contain the radius of curvature of the 

beam as a term. However, for segmental (circular) 

beams (arches), solution is possible as the radius of 

curvature is constant (see Equations 1a-c). Hence, 

closed-form expressions for segmental arches could 

be derived and analyzed first, and then expanded to 

parabolic and catenary arches. 

Let us observe typical symmetric arches with a 

circular shape (represented by their centerlines), as 

shown in Figure 1. To simplify presentation, the 

main geometrical parameters, as adopted in this 

study, are given only in Figure 1c (hingeless arch): 

centerline radius R, centerline span L, centerline rise 

D, and angle of embrace . To simplify the formulas, 

 will be substituted, where appropriate, with 2, 

where  is half-angle of embrace (i.e., =/2, or  

=2). The same notation applies for Figures 1a and 

1b (three- and two-hinged arch, respectively). 
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Figure 1: a) three-hinged, b) two-hinged, and c) hingeless 

arch 
 

Let the origin of curvilinear (natural) coordinate 

system be taken at the apex of the arch centerline, 

and natural coordinate s is measured from that origin 

clockwise. Note that ratio s/R represents the angle  

(in radian) between the vertical line connecting the 

apex and the center of the circle of the arch 

centerline, and the line connecting point with 

coordinate s and the center. Let us denote vertical 

load with qy(s) and its normal and tangential 

components (to the arch centerline) with qn(s) and 

qt(s), respectively. Positive orientation of s, qy(s), 

qn(s), and qt(s) is shown in Figure 1 (this convention 

is chosen so that the bending moment in the arch is 

positive if tensioning the lower fiber of cross-

section). Then, the general equations of equilibrium 

for the circular arch are given as follows [13]: 

0)(
)(

d

)(d
 sq

R

sS

s

sN
t               (1a) 

 0)(
)(

d

)(d
 sq

R

sN

s

sS
n              (1b) 

0)(
d

)(d
 sS

s

sM
                  (1c) 

0
d

)(d)()(

d

)(d
22

2


s

sq

R

sq

R

sS

s

sS nt      (2)  

where: N(s), S(s), and M(s) are the normal force, 

shear force, and bending moment, respectively;  

Equations 1a-c are independent, while Equation 2 is 

obtained by combining Equations 1a and 1b in order 

to provide a solution for shear force S(s) for given 

loads qn(s) and qt(s). To complete the solution, it is 

necessary to determine two constants of integration 

from static boundary conditions. Then, Equation 1c 

is used to find M(s), with the third constant of 

integration determined from boundary conditions. 

Finally, N(s) is determined using Equation 1b. Let us 

assume that only a vertical symmetric load qy(s) acts 

over the arch. Then, the reactions will be symmetric 

too and the following expressions for internal forces 

are valid for all three types of symmetric arches: 
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yq

RM 

y yq q

RR RLM M are reactions due to load qy (see Figure 

1); note that 0yq

RM   for the three-hinged and two-

hinged arches (no moment reactions at pin supports). 

 

3. REACTIONS AND INTERNAL FORCES IN 

TYPICAL ARCHES DUE TO SELF-WEIGHT 

Let us denote with g(s) the self-weight of an arch 

distributed linearly along the centerline of the arch. 

Hence, at any point with coordinate s, g(s) is special 

case of qy(s). For arch with constant cross-section 

made of homogeneous material g(s)=g=constant. 

The normal and tangential component of load (see 

Figure 1) are expressed as follows: 

R

s
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R

s
gsqt sin)(              (4) 
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In all equations that are presented in this section, 

superscript g is used to denote self-weight of the 

arch. Self-weight g of a symmetric segmental arch 

will generate reactions that are symmetric with 

respect to the vertical axis of symmetry, i.e., VL
g
 = 

VR
g = Vg, HL

g
 = HR

g = Hg, and MRL
g

 = MRR
g = MR

g (see 

Figure 1). Due to symmetry, the vertical reaction Vg 

is equal to half-weight of the arch. The vertical 

reaction Vg, vertical force Qy
g
 , and moment My

g (see 

Equations 3) are calculated as follows:  
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Expressions 4 and 5 are valid for all three types of 

arches considered in this paper, as per Figure 1. 

Consequently, the difference in internal forces for 

the three types of arches will depend only on 

difference in horizontal reactions Hg (exists in all 

three types of arches) and moment reaction MR
g 

(exists only for hingeless arch), see Equations 3. 

Derivation of closed-form expressions for reactions 

and internal forces involves approaches of classical 

structural analysis. In order to focus on the aims of 

this paper, as well as to improve its readability, these 

derivations, along with associated approaches are 

presented in part in [20] and in full detail in [21]. 

Only the results are presented in this section. 

3.1. Reactions and internal forces in a three-

hinged segmental arch loaded by self-weight 

Expressions for horizontal reactions and internal 

forces in three-hinged segmental arch are given in 

Equations 6 and 7a-c, respectively. Subscript “3h” is 

used to emphasize that the structure is three-hinged.  
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In Equation 6, the first right-hand expression is given 

in terms of arch radius and half-angle of embrace, 

while the second is given in terms of the arch span 

and the half-angle of embrace. Equation 6 is simple 

to apply (especially the first right-hand expression) 

and can be directly used for conceptual design or 

preliminary analysis of symmetrical segmental 

three-hinged arches with a constant cross-section.  

3 ( ) cot 1 cos sin
2

g

h

s s s
N s gR

R R R




  
     

  
 

(7a) 

3 ( ) cot 1 sin cos
2

g

h

s s s
S s gR

R R R




  
    

  
 

(7b)                  

2

3 ( ) cot cos cos
2

g

h

s
M s gR

R


 
  

    
 

                          

sin sin
s s

R R
 

 
  
 

 (7c) 

Equations 6 and 7 are analyzed in more detail and 

compared to similar equations for two-hinged and 

hingeless arch in Subsections 3.5 and 3.6. 

3.2. Reactions and internal forces in a two-

hinged segmental arch loaded by self-weight 

Expressions for horizontal reactions and internal 

forces in two-hinged segmental arch are given in 

Equations 8 and 9a-c, respectively. Subscript “2h” is 

used to emphasize that the structure is two-hinged.  
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Note that Equation 8, which expresses the horizontal 

reaction in a two-hinged arch is more complex than 

Equation 6, which expresses the horizontal reaction 

in a three-hinged arch. The appearance of the former 

is complex and difficult to intuitively understand. 

Hence, it is not practical (yet it is feasible) to use it 

for conceptual design or preliminary structural 

analysis of a two-hinged arch. Equation 8 can be 

simplified to a certain extent by deriving a simplified 

expression for the horizontal reaction of a hingeless 

arch and appropriately combining it with Equation 6. 

Equations 8 and 9 are further analyzed and compared 

to similar equations for the three-hinged and 

hingeless arch in Subsections 3.5 and 3.6. 

3.3. Reactions and internal forces in a hingeless 

segmental arch loaded by self-weight 

Expressions for horizontal reactions, internal forces, 

and moment reactions in hingeless segmental arch 

are given in Equations 10, 11a-c, and 12, 

respectively. Superscript “0h” is used to emphasize 

that the structure is hingeless (i.e., it has 0 hinges). 

Equation 10 is given in closed form; however, its 

appearance is complex and difficult to intuitively 

understand. Significant simplification of this 

equation is made in the next subsection. 
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3.4. Simplified equation for horizontal 

reactions of a hingeless segmental arch loaded by 

self-weight 

To better understand Equation 10, the dependence of 

the normalized horizontal reaction H0h
g on the half-

angle of embrace  (in radians) is given in Figure 2.  

Figure 2: Dependence of H0h
g normalized with gL on half-

angle of embrace , and power function approximation 

Normalization is performed using product gL, i.e., 

the dependence of H0h
g/(gL) on  is presented. The 
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approximation of this dependence using the power 

function is also determined in Figure 2, based on 

which, the following approximate equation can be 

used to determine H0h
g:  

0
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gR gL gL
H
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  
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By comparing Equations 10 and 13, it can be shown 

that the later underestimates the former for less than 

2% (see Figure 3). In particular, the second and third 

right-hand terms in Equation 13 show that the 

horizontal reaction H0h
g (i.e., thrust) in hingeless arch 

due to self-weight is approximately equal to the 

product of weight per unit length g and span of arch 

L, divided by angle of embrace =2. Note that 

product gL is equal to the weight of an imaginary 

straight beam which bridges the same span L and has 

the same weight per unit length g as the arch. 

 

Figure 3: Relative difference between approximate and 

true expression (Eq. 13 and 10, resp.) for the horizontal 

reaction of hingeless arch loaded with self-weight 

The approximate expression given in Equation 13 is 

surprisingly simple and intuitive, yet very accurate, 

and it can be directly used in conceptual design or 

preliminary analysis of hingeless segmental arches. 

It will be shown later in the text that this equation 

can be extended to three- and two-hinged segmental 

arches too, with some limitations in accuracy 

imposed by the size of half-angle of embrace . 

Figure 2 and Equation 13 show that the normalized 

horizontal reaction changes for relatively small 

values (less than 5% per degree) for half-angle of 

embrace equal or greater than approximately 0.37 

rad (21°). For this angle the rise to span ratio D/L = 

0.092 (see Figure 4) and normalized horizontal 

reaction H0h
g/(gL)=1.368. For smaller half-angles of 

embrace, the rise is very small, and normalized 

horizontal force increases importantly as the angle 

decreases. These arches can be classified as “flat”. 

Note that as the arch “flattens”, the half-angle of 

embrace approaches to 0 rad (0), D/L approaches to 

0 (see Figure 4) and H0h
g/(gL) rises to infinity. This 

shows that for very small half-angles of embrace the 

assumptions of the linear theory might not be valid.  

For half-angle of embrace equal to 1.20 rad (69), the 

rise to span ratio D/L = 0.344 (see Figure 4) and the 

normalized horizontal reaction H0h
g/(gL)=0.423. For 

this angle, the relative difference between Equations 

13 and 10 is the largest by absolute value (-1.87%). 

Arches with half-angles of embrace larger than 1.20 

rad (69) can be classified as “tall”. Note that for the 

“tallest” arch the half-angle of embrace is 1.57 rad 

(90), D/L = 0.5 (see Figure 4) and H0h
g/(gL)=0.320. 

For half-angle of embrace of 0.79 rad (45°), the rise 

to span ratio D/L = 0.207 (see Figure 4) and the 

normalized horizontal reaction H0h
g/(gL)=0.644. 

This value is approximately twice as low as the 

normalized horizontal reaction of the “least flat” 

arch, and approximately twice higher than the 

“tallest” arch. Hence, the half-angle of embrace of 

0.79 rad (45°) is chosen to delimit “shallow” arches 

and arches with moderate rise (see Figure 4), i.e., the 

arches that have half-angle of embrace between 0.37 

rad (21°) and 0.79 rad (45°) can be classified as 

shallow, and those with half-angle of embrace 

between 0.79 rad (45°) and 1.20 rad (69°) as arches 

with moderate rise (or moderate arches). 

 

Figure 4: Classification of arches and characteristic 

values of D/L, , and H0h
g/(gL); reactions to the left are not 

shown to simplify the figure 

The above classification of arches eases description 

in further text. For illustrative purposes, Figure 4 

shows the arches with the rise to span ratios that 

describe the above classification. Normalized 

horizontal reactions are shown graphically and the 

lengths of the arrows are drawn in proportion to the 

magnitude of the reactions.  

3.5. Relationships between reactions and 

between internal forces 

Expression 13 calculates the approximate value of 

the horizontal reaction of a hingeless arch and is both 

intuitive and simple to apply. Equation 6 calculates 

the horizontal reaction of a three-hinged arch. It is 
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not intuitive, but it is still simple to apply. Its graph 

is qualitatively similar to that shown in Figure 2, but 

it cannot be approximated with the power function 

with a sufficient degree of accuracy. Expression 8 

calculates the horizontal reaction in a two-hinged 

arch, and while applicable, it is relatively complex 

and cannot be further simplified. Similar to the three-

hinged arch, its graph is qualitatively similar to that 

shown in Figure 2, but similarly, it cannot be 

approximated with the power function with a 

sufficient degree of accuracy. A relative difference 

between the power-function approximation and the 

true equation would range from -6.4% (for flat 

arches) up to 19.2% (for tall arches). To explore the 

relationship between the horizontal reactions of the 

three structural systems, and to further simplify 

Expression 8, the horizontal reactions in the three-

hinged and two-hinged arch was normalized with the 

horizontal reaction in a hingeless arch and graphed 

against the half-angle of embrace in Figure 5.  

 

Figure 5: Ratios between horizontal forces of the three-

hinged and hingeless arch, and two-hinged and hingeless 

arch, as functions of half-angle of embrace 

The figure leads to several important conclusions:  

(1) Figure 5 shows that the horizontal reaction is the 

highest for a hingeless structure and the lowest for a 

two-hinged structure, which is somewhat counter-

intuitive in two aspects – first, one would intuitively 

expect the largest reaction for a determinate structure 

(three-hinged arch) and the lowest for the most 

indeterminate structure (hingeless); second, one 

would intuitively expect that the horizontal reaction 

“follows” the trend of determinacy, i.e., one would 

expect that the second to highest is in the two-hinged 

and not in the three-hinged arch; these “paradoxes” 

can be qualitatively explained by the facts that the 

two-hinged arch has the most balanced bending 

moment distribution, i.e., maximum and minimum 

are similar by absolute value, and thus the smallest 

horizontal reaction, while the hingeless arch has to 

comply with extra boundary conditions at its 

extremities (no rotation of cross-section) and thus the 

largest horizontal reaction; 

(2) The applicability of Equations 6 and 13 can be 

understood by analyzing in more detail the 

relationships between the graphs shown in Figure 5; 

the figure shows that for flat arches there is no 

significant difference in the horizontal reaction 

between the three types of arches – the ratio for the 

three-hinged arches ranges between 0.997 and 1 (i.e., 

max. relative difference is 0.3%), while for the two-

hinged arches it ranges between 0.993 and 1 (i.e., 

max. relative difference is 0.7%); the difference is 

also small for shallow arches – for the three-hinged 

arches the ratio ranges between 0.983 and 0.997 

(max. relative difference is ranged between 0.3% and 

1.7%), while for the two-hinged arches the ratio 

ranges between 0.966 and 0.993 (max. relative 

difference is ranged between 0.7% and 3.4%); in 

addition, the relative difference is acceptably small 

even for some arches with moderate rise – for the 

three-hinged arches the ratio ranges between 0.952 

and 0.983 (max. relative difference is ranged 

between 1.7% and 4.8%), while for the two-hinged 

arches the ratio ranges between 0.903 and 0.966 

(max. relative difference is ranged between 3.4% and 

9.7%); finally, the difference is acceptably small for 

some tall three-hinged arches as the ratio ranges 

between 0.892 and 0.952 (max. relative difference is 

ranged between 4.8% and 11.8%); the above 

discussion leads to the following conclusions:  

a. The applicability of Equation 13 can be extended 

to three- and two-hinged flat and shallow arches 

with reasonably good accuracy (as per above 

discussion), to some extent to three- and two-

hinged arches with moderate rise (especially 

given that the Equation 13 underestimates the true 

value of Equation 12, i.e., to small extent 

compensate the relative difference shown in 

Figure 5), and even to tall three-hinged arches 

(depending on desired accuracy);  

b. A discussion similar to one presented above can 

be derived for Equation 6, i.e., Equation 6 can be 

extended to two-hinged and hingeless flat and 

shallow arches, with reasonably good accuracy, 

and to some extent to two-hinged and hingeless 

arches with moderate rise and even tall arches; the 

main difference from point a. above is that for 

each half-angle of embrace Equation 6 

underestimates the value of the horizontal 

reaction of the hingeless arch and overestimates it 
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for the two-hinged value for approximately the 

same percentage; for example, for the half-angle 

of embrace of 69° Equation 6 underestimates the 

value of the horizontal reaction in a hingeless arch 

for approximately 5% and overestimates the  

value of the horizontal reaction in a two-hinged 

arch for approximately the same value, i.e., 5% 

(see Point 3 below for more detail); 

These discoveries represent an important 

contribution of this paper, as they broaden the 

applicability of Equations 13 and 6, the former being 

simpler and more intuitive, but providing less 

accurate results for the two-hinged arches with 

moderate rise (and tall arches), and the latter being 

more complex and less intuitive, but providing with 

approximately equally accurate results when 

extended to both two-hinged and hingeless arches. 

(3) Probably the most unexpected conclusion from 

Figure 5 is that the horizontal reaction in the three-

hinged arch is approximately equal to the average 

value of the horizontal reactions in the hingeless and 

two-hinged arch, i.e., the following equation applies: 

 3 0 2

1

2

g g g

h h hH H H                   (14) 

If Equations 6, 8, and 10 are used in Equation 14, 

then the biggest absolute relative difference of -0.2% 

is obtained for the half-angle of embrace equal to 

90°; if the simplified Equation 13 is used instead of 

Equation 10, then the biggest absolute relative 

difference of -1.0% is obtained when the half-angle 

of embrace ranges between 62° and 79°;  

An important consequence of Equation 14 is that the 

normal and shear forces obey to the same 

relationship, while bending moment follows a 

slightly modified relationship, as shown in Equations 

15a-c (see also Equations 3a-c);  
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1
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h h hN s N s N s           (15a) 
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g g g

h h hS s S s S s            (15b) 
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h h h hM s M s M R M s          

 0 2 ,0

1 1
( ) ( )

2 2

g g g

h h R hM s M s M    (15c) 

Finally, the complicated equation given in 

Expression 8 can be replaced with the following, 

simplified equation: 

2 3 02g g g

h h hH H H                   (16) 

If Equations 6, 8, and 10 are substituted in Equation 

16, then the biggest absolute relative difference of      

-0.4% is obtained for a half-angle of embrace equal 

to 90°; if the simplified Equation 13 is used instead 

of Equation 10, the biggest absolute relative 

difference of -2.2% is obtained when the half-angle 

of embrace ranges between 72° and 73°;  

Equations 14-16 represent another important 

contribution of this paper, as they establish 

approximate relationships between the horizontal 

reactions and between internal forces of the three-

hinged, two-hinged and hingeless segmental arches 

with the same geometrical properties.   

3.6. Example of comparative analysis of three-

hinged, two-hinged and hingeless segmental 

arches loaded by self-weight  

To understand the theoretical behavior of arches, 

let’s first define normalized internal forces N , S , 

and M , and normalized eccentricity e as shown in 

Equations 17. Note that for each cross-section with 

coordinate s, e(s) represents equivalent eccentricity 

of normal force in cross-section, i.e., it shows the 

location of the resultant of stresses in the cross-

section (e(s) practically represents the thrust line). 

( )
( )

N s
N s

gL
 ; 

( ) ( ) / ( )
( )

e s M s N s
e s

L L
    (17a) 

2

( )
( ) ( ) ( )

M s
M s N s e s

gL
             (17b) 

( ) d ( )
( )

d

S s M s
S s L

gL s
               (17c) 

Normalized diagrams (thrust lines) of hingeless 

(“0hinge”), two-hinged (“2hinge”), and three-hinged 

(“3hinge”) arches with half-angles of embrace of 

21°, 45°, 69°, and 90° are shown in Figure 6. These 

angles are selected as they represent the upper limit 

for flat, shallow, moderate, and tall arches (see also 

Figure 4). To keep the paper concise, diagrams of 

normalized normal force, bending moment and shear 

force are not presented; their trends can be inferred 

from Equations 17b-c. 

The diagrams of normalized eccentricity show that 

for flat arches there is no significant difference in 

stress distribution between the three structural 

systems, and the maximum absolute normalized 
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eccentricities for hingeless, two-hinged, and three-

hinged arches is smaller than 0.0005 (for half-angle 

of embrace of 21°, see Figure 6). This extremely 

small value (e.g., for 10 m span max. absolute 

eccentricity is 5 mm) can be explained by the fact 

that for such a small angle of embrace the difference 

in shape between circular segment and catenary with 

the same span and rise is very small, and thus the 

three types of arches have practically the same 

behavior as catenary arches under self-weight, i.e., 

the bending moment is close to zero and 

consequently eccentricity is close to zero.  

Figure 6: Normalized diagrams of eccentricity (thrust line) 

for hingeless (0hinge), two-hinged (2hinge), and three-

hinged (3hinge) arches with half-angle of embrace of 21°, 

45°, 69°, and 90°; scale is the same for all figures (sign 

convention: eccentricity is positive below the centroid line) 

For shallow arches, the maximum absolute 

normalized eccentricity increases with the half-angle 

of embrace to 0.0042, 0.0039, and 0.0052 for the 

hingeless, two-hinged, and three-hinged arch, 

respectively (for 45°, see Figure 6). These values are 

still very small (e.g., for 10 m span max. absolute 

eccentricities are 42 mm, 39 mm, and 52 mm) due to 

similarity in shape to catenary and show that there is 

a little influence of bending moments and shear 

forces to stress distribution in all three types of 

arches, and thus, the three types of arches have very 

similar behavior, when flat and shallow. 

Finally, for arches with moderate rise and tall arches 

the absolute value of normalized eccentricity further 

increases with the half-angle of embrace, and reaches 

0.0349, 0.0708, and 0.0524 for half-angle of 

embrace of 90° (see Figure 6). This shows that in tall 

arches, the hingeless, two-hinged, and three-hinged 

arch may have significantly different behavior from 

each other, especially for higher values of half-

angles of embrace. 

The comparative analysis performed in this 

subsection is just one of a kind that demonstrates the 

practicality of the use of closed-form equations to 

understand structural behavior of arches. Many other 

studies can be performed, for example focusing on 

stress analysis, tolerable differential movements of 

supports, etc. 

3.7. Applicability of Equations 13 and 14 to the 

catenary and parabolic arches  

As mentioned in Section 1, it is well known that the 

ideal shape for an arch loaded with self-weight is the 

shape of a catenary curve [5]. However, in modern 

practice, the shape of parabola is frequently used, 

mostly because it has an ideal shape for the 

uniformly distributed load along the deck over an 

arch, its shape is very close to the catenary even for 

tall arches, and finally, its shape is simple to describe 

mathematically in Cartesian coordinates (simpler 

than segment of a circle or catenary), and thus a 

construction of a parabolic arch is simple. However, 

closed-form equations for parabolic shape are much 

more difficult to derive since the radius of geometric 

curvature R (see Equations 1a-c) is not constant 

along the arch; in addition, deriving the flexibility 

coefficients is also very difficult as integration of real 

and virtual internal forces has to be performed over 

the parabolic curve using natural (arc-length) 

parametrization (the parabola has a simple equation 

in Cartesian coordinates, but very complex when 

described with natural parametrization).  



Vol. 61 (2020) No. 3 September n. 205 

236 

The applicability of the Equations 13 and 14 (and 

consequently 15a-c) for catenary and parabolic 

arches is examined in this section. Figure 7 shows 

the three arch shapes for four characteristic rise-to-

span ratios D/L. 

 

Figure 7: Comparison of shapes for segmental, catenary, 

and parabolic arches for typical rise-to-span ratios 
 

The figure shows that the three curves have almost 

indistinguishable shapes for flat and shallow arches. 

The distinction between the shapes becomes visible 

as the rise-to-span ratio further increases. For 

moderate and especially for tall arches, the 

segmental arch has a significant departure from 

catenary, while parabolic arch has just a mild 

difference from catenary, showing that for moderate 

and tall arches the parabolic arch is better suited to 

carry self-weight than a segmental arch. Table 1 

summarizes the normalized horizontal reaction for 

different shapes of arches and enables evaluation the 

applicability of simplified Equations 13 and 14 to 

catenary and parabolic shape. 

Table 1: Normalized horizontal reaction in hingeless 

segmental, catenary, and parabolic arches for typical rise-

to-span ratios 

A
rc

h
 

p
ro

p
er

ti
es

  Rise-to-span  

 ratio (D/L) 
0.092 0.207   0.344  0.500 

 Classification  

 (upper limit) 
Flat 

Shal-

low 

 Mode-  

rate 
Tall 

N
o

rm
al

iz
ed

 h
o

ri
zo

n
ta

l 
re

ac
ti

o
n

 
H

/(
g

L
) 

 Segmental, hinge- 

 less, (exact, Eq. 10) 
1.3684 0.6444 0.4231 0.3197 

 Segmental, hinge- 

 less (appr., Eq. 13) 
1.3642 0.6366 0.4152 0.3183 

 Catenary arch  

 (all types) 
1.3641 0.6354 0.4109 0.3094 

 Parabolic arch*,  

 hingeless 
1.3620 0.6322 0.4088 0.3107 

 Parabolic arch*,  

 three-hinged 
1.3641 0.636 0.4135 0.3153 

 Parabolic arch*,  

 two-hinged 
1.3663 0.6409 0.4212 0.3258 

R
el

at
iv

e 
d

if
fe

re
n

ce
 

[%
] 

 Eq. 13 vs. catenary  

 [%] 
0.01 0.20 1.04 2.89 

 Eq. 13 vs. parabolic  

 hingeless [%] 
0.15 0.70 1.55 2.43 

 Eq. 13 vs. parabolic  

 three-hinged [%] 
0.005 0.09 0.41 0.96 

 Eq. 13 vs. parabolic  

 two-hinged [%] 
-0.16 -0.66 -1.42 -2.31 

*Calculated using numerical integration (four significant figures) 

The table shows that the simplified expression given 

in Equation 13 is applicable to the catenary arch, for 

all rises, as the relative error in the normalized 

horizontal reaction is under 3%. The error is 

practically negligible for flat, shallow and moderate 

arches as it is under or around 1%. A similar 

conclusion applies to all three types of parabolic 

arches, with slightly different figures regarding the 

accuracy of estimation (see table for details). Table 

1 practically shows great versatility in application of 

Equation 13, as it can be extended to catenary and 

parabolic arches. However, given that these two 

forms do not have an angle of embrace, an equivalent 

angle of embrace can be calculated as shown in 

Equation 18 and then used in Equation 13 (derivation 

follows from geometry of arch shown in Figure 1). 

2 4arctan 2equivalent equivalent

D

L
 

 
   

 
       (18) 

Note that catenary arch under the self-weight is 

moment free, which has two consequences: first, the 

Equation 13 can be applied with the same accuracy 
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to the three- and two-hinged catenary arches; and 

second, Equation 14, and consequently Equations 

15a-c, are all applicable to three-hinged, two-hinged 

and hingeless catenary arches. 

In addition, Table 1 shows that Equation 14, and 

consequently Equations 15a-c, are also all applicable 

to the three-hinged, two-hinged and hingeless 

parabolic arches under self-weight. There are many 

other important conclusions that can be carried out 

from Table 1, e.g., using similar approach as 

described in Section 3.6. However, further detailed 

analysis of parabolic arches is out of the scope of this 

paper. 

3.8. Example of extension of work to a different 

load scenario: uniformly distributed vertical load 

along arch span 

This section briefly presents an example of extension 

of the work to different load scenario – uniformly 

distributed vertical load, qy(x)=q(x)=q=constant, 

along the span of typical segmental arches. This, load 

corresponds to a self-weight of a deck supported by 

the arch, as shown in Figure 8. To keep this section 

concise, only closed equations for reactions are 

presented in this section along with the most 

important findings. Also, only hingeless structure is 

presented in Figure 8 (for three- and two-hinged 

structure the load is the same).  

 

Figure 8: Uniformly distributed load acting over 

segmental arch; superscript “q” is omitted in 

corresponding reactions to simplify presentation 

Vertical reactions in all three types of arches are 

expressed by Equation 19. Horizontal reactions in 

three-hinged, two-hinged, and hingeless arch are 

expressed by Equations 20, 21, and 22, respectively. 

Moment reaction in hingeless arch is expressed by 

Equation 23. 

Expression for horizontal reaction of three-hinged 

arch is very simple and intuitive (Equation 20); 

however, this is not the case for the two other arch 

types. Equations 21 and 22 cannot be further 

simplified without loss of accuracy. Thus, the 

applicability of Equation 20 on two-hinged and 

hingeless arches is further examined using similar 

approach as the one taken in Subsection 3.5.  
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Horizontal reactions of three-hinged and two-hinged 

arch were normalized with horizontal reaction in 

hingeless arch and graphed against half-angle of 

embrace in Figure 9 (compare with Figure 5).  
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Figure 9 is qualitatively similar to Figure 5, and 

consequently discussion and conclusions related to 

Figure 9 are qualitatively the same as those related to 

Figure 5, presented in bullet points 1-3 in Subsection 

3.5. The only practical difference in discussion and 

conclusions is quantitative. For example, Equation 

14 is valid for (can be extended to) load case 

discussed in this section, i.e., the subscript g can be 

replaced with q to obtain: 

 3 0 2

1

2

q q q

h h hH H H                     (24) 

 

Figure 9: Ratios between horizontal forces of three-hinged 

and hingeless arch, and two-hinged and hingeless arch, as 

functions of half-angle of embrace (uniformly distributed 

load along the span) 

In Equation 24 the biggest absolute relative 

difference between the right and left side is -1.6% for 

half-angle of embrace of 90°, which is higher than 

for the load case described in Subsection 3.5 (self-

weight), but still acceptably small. Therefore, 

relationships between internal forces of the three-

hinged, two-hinged, and hingeless arches follow the 

same rule as described in Equations 15a-c for self-

weight load case. 

Given that Equations 21 and 22 cannot be further 

simplified, it is important to note that, based on 

Figure 9, the Equation 20 can be extended to two-

hinged and hingeless flat and shallow arches, with 

reasonably good accuracy, to some extent to arches 

with moderate rise, and even to tall arches, 

depending on acceptable accuracy. Equation 20 

underestimates value of horizontal reaction of 

hingeless arch as follows: for flat arches less than -

0.5%, for shallow arches -0.5% to -2.3%, for arches 

with moderate rise -2.3% to -5.8%, and for tall arches 

-5.8% to 10.7%. Equation 21 overestimates value of 

horizontal reaction of two-hinged arch as follows: 

for flat arches less than 0.5%, for shallow arches 

0.5% to 2.6%, for arches with moderate rise 2.6% to 

7.5%, and for tall arches 7.5% to 17.8%.  

Given that the load q does not depend on arch shape, 

Equation 20 is valid for any three-hinged arch 

(regardless the shape) that has the same geometrical 

location of hinges as the arch shown in Figure 9 (this 

can be proven from simple equations of 

equilibrium). Consequently, Equation 20 can be 

extended to three-hinged parabolic and catenary 

arches. In addition, parabolic shape is ideal for load 

q, i.e., parabolic arch is moment-free and shear force-

free under the load q, and therefore, Equation 20 is 

also applicable to two-hinged and hingeless 

parabolic arches. Furthermore, given similarity in 

shape between parabolic and catenary arches (see 

Figure 7), Equation 20 can also be extended to two-

hinged and hingeless catenary arches. The upper 

limits for maximum absolute error for two-hinged 

arch are 0.2% for flat, 0.8 for shallow, 1.9% for 

moderate, and 3.6% for tall arch. The upper limits for 

maximum absolute error for hingeless arch are -0.2% 

for flat, -0.6 for shallow, -1.2% for moderate, and -

1.7% for tall arch.  Hence, Expression 24 (or, 

extension of Equation 14) also applies to parabolic 

(exactly) and catenary arches (approximately, with 

maximum absolute error under -0.9% for equivalent 

half-angle of embrace of 90°). 

Equations given in this section allow for analysis 

similar to that performed in Subsection 3.6 for self-

weight load case, but also for various other types of 

different analyses. For instance, comparison between 

the two load cases (self-weight of the arch vs. self-

weight of the deck) can be carried out. To illustrate 

this statement, two examples are given. 

In Equation 20, if the values of half-angle of embrace 

 are small enough, then Equation 25 is valid. 

 "small enough"       

                     
3 tan

2 2 2
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h

qL qL
H

 

 
    (25) 

Equation 25 is, practically, an extension of Equation 

13 obtained by substitution of g with q. 

For half-angles of embrace  of 21°, 45°, 69° and 

90°, Equation 25 underestimates the exact Equation 

20 for 1.1%, 5.2%, 12.4% and 21.5%, respectively. 

Hence, simplified Equation 25 (i.e., Equation 13) can 

be used instead of the exact Equation 20 in flat and 

shallow arches with reasonably good accuracy, while 

for moderate and tall arches the equation gradually 

loses accuracy. Equation 25 is analogue to Equation 

13, and they converge to each other and to exact 

solutions as the half-angle of embrace approaches to 
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zero. This is understandable as for very small half-

angles of embrace, arch geometry approaches to that 

of catenary and self-weight approaches to uniformly 

distributed load along the span of the arch. 

As an additional example, Figure 10 compares the 

moment reactions in hingeless arch exposed to self-

weight g (Equation 12) and uniformly distributed 

load along the span of the arch q (Equation 23), the 

former is normalized with gL2 and latter with qL2.  

 

Figure 10: Normalized moment reactions of hingeless arch 

loaded by self-weight g and uniformly distributed load q 

Similarity between the two curves is striking, given 

that for moderate and especially tall arches the 

distribution of load along the span is significantly 

different. The maximum relative difference between 

the two curves is for moderate and tall arches smaller 

than 8.5%. Closed equations for internal forces can 

be derived by using Equations 3, and comparative 

analysis between the three typical structural systems 

using approach similar to that presented in 
Subsection 3.6. 

4.  CONCLUSIONS 

Closed-form equations for reactions and internal 

forces of linear-elastic segmental, catenary, and 

parabolic arches are explored in this paper, resulting 
in several important findings and simplifications. 

The findings and their interpretations were to a large 

extent enabled by a simplified formula for 

determination of the horizontal reactions (thrust) of 

the hingeless segmental arch under self-weight 

(Equation 13), which were found to be 

approximately equal to the product of arch span and 

linear weight, divided with angle of embrace 

(expressed in radians). This formula is intuitive, 

simple to remember and apply, it is valid for all 

values of angles of embrace between zero 

(theoretical) and  (180°), and it underestimates the 

theoretical true value for less than 2% for all rises of 

the arch (i.e., for all angles of embrace). In addition, 

the same formula was proven to be also applicable to 

the catenary and parabolic three-hinged, two-hinged, 

and hingeless arches with a relative difference within 

3%. Analysis of dependence of normalized 

horizontal reaction of half-angle of embrace helped 

classify the arches based on their geometrical 

properties to flat arches (0°-21°), shallow arches 

(21°-45°), arches with moderate rise (moderate 
arches, 45°-69°), and tall arches (69°-90°).  

Three important findings related to segmental arches 

are: the fact that hingeless arch has the highest and 

the two-hinged arch the lowest magnitude of 

horizontal reaction (for the same geometrical 

properties, under  self-weight and under uniformly 

distributed load along the span); the fact that 

horizontal reaction in three-hinged arch is 

approximately equal to average value between the 

horizontal reactions of hingeless and two-hinged 

arch (Equations 14 and 25); and, as a consequence of 

the latter, the normal and shear force in the three-

hinged arch are approximately equal to the average 

value between the normal forces and shear forces of 

hingeless and two-hinged arch (Equations 15a-b). 

The latter two conclusions apply to parabolic and 

catenary arches too.  

Finally, applicability of closed-form equations was 

briefly evaluated through comparison of the 

eccentricity in arches with different geometries, 

different structural systems, and different loads.       

To complete the understanding of linear elastic 

arches, future research should include the influence 

of other types of loads and in particular the influence 

of concentrated force and non-symmetric loads. 

Also, further comparisons between different 

structural systems as well as inclusion of one-hinged 

arch (with hinge at the apex, rarely found in real-life 

applications), could be included in the future work.  
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